My Project

Now that you have some background on D(0), what it is, and why it is an important area of research, I can explain in more depth what I plan to do.

My goal is to synthesize and detect D(0) by replication the work of Professor Holmlid as described in several publications. There are two components to my project, the first is to actually build a device capable of producing D(0), and the second is to build a scintillation counter to detect rare spontaneous fusion events in D(0).

In Efficient Source for the Production of Ultradense Deuterium Holmlid details the key components of the emitter that his group uses to create samples of D(0). The apparatus is quite simple, and pictured below (from the article):

 

 

This set-up exposes the deuterium to two different processes. As deuterium gas flows through the platinum tubing a small portion of it dissociates into individual atoms of hydrogen, known commonly as “atomic hydrogen” or “nascent hydrogen”. Platinum is a particularly effective metal for this purpose, it is used widely in chemistry as a hydrogenation catalyst precisely because it effectively dissociates hydrogen. The tube is heated by a copper current clamp to around 200 celsius, and this further aids the dissociation process.

If two hydrogen atoms come into close proximity with each other they will recombine into regular molecular hydrogen, and for this reason, the hydrogen flow must be kept at fairly low pressure (also to limit the deuterium used and to keep as a high a vacuum as possible,

Now that some of the hydrogen has been converted into the monoatomic form it is passed through a small cylinder of potassium-doped iron oxide, specifically, a material known as S-105, which is used as a hydrogen abstraction catalyst. The when the hydrogen atoms leave (desorb from) the surface of the S-105 catalyst they are able to fall into the correct energy state to allow them to aggregate together to form D(0) clusters/chains.

After this, the D(0) clusters/chains should fall below onto a piece of metal foil, and very very rarely, one of them will have two deuterium atoms spontaneously come close enough to each other to fuse, and, though as-of-yet-unexplained mechanisms, produces mesons. These will rapidly decay into muons, which, if they exist, should pass through a block of plastic scintillator attached to the cosmic ray detector inside the container, and stimulate the plastic to produce blue photons. These photons will form a small electric signal in the avalanche photodiode, which will be picked up by the Arduino nano at the heart of the detector. If enough of these events are logged within a short period, it will provide evidence that ultra-dense deuterium has been created.

 

 

Leave a Reply

Your email address will not be published. Required fields are marked *